STATISTICS (C) UNIT 2 TEST PAPER 3

- 1. A tour company wishes to assess attitudes to family holidays in Greece. It decides to interview all the passengers on a plane returning from Crete.
 - (i) Comment on this way of obtaining a sample, and suggest a better way. [2]

The plane has seats for 120 passengers, and on average it is 97% full. The random variables X and Y represent the number of passengers and the number of empty seats respectively.

- (ii) State, with a reason, which of *X* and *Y* is more suitable to be approximated by a Poisson distribution.
- 2. A die is rolled 30 times, and the mean score *X* is calculated.

Given that, for a very large number of trials with this die, the mean score is 3.5 and the variance is 2.91666,

- (i) write down the distribution of *X*. [3]
- (ii) Hence find the probability that, in any particular sample of 30 trials, 3 < X < 4. [3]
- 3. A group of 74 babies, all suffering from a certain disease, have a mean birth-weight of 2.96 kg. In the population as a whole, the mean birth-weight of a baby is 3.2 kg, with a standard deviation of 0.7 kg.

Taking the null hypothesis that babies with the disease have the same mean birth-weight as other babies, and the alternative hypothesis that their birth-weight is below average,

- (i) find the rejection region for H0 at the 1% significance level. [4]
- (ii) State the probability of making a Type I error. [1]
- (iii) Describe what a Type II error means in this context. [2]
- 4. In a certain school, 32% of Year 9 pupils are left-handed. A random sample of 35 Year 9 pupils is chosen.

Use an appropriate normal distribution to estimate the probability that the sample contains more than 5 but less than 15 left-handed pupils.

[6] Explain what adjustment is necessary when using this approximation. [1]

[2]

- 5. A sample of radioactive material decays randomly, with an approximate mean of 1.5 counts per minute.
 - (i) Name a distribution that would be suitable for modelling the number of counts per minute.Give any parameters required for the model. [1]
 - (ii) Find the probability of at least 4 counts in a randomly chosen minute. [2]

(iii) Find the probability of 3 counts or fewer in a random interval lasting 5 minutes. [2]More careful measurements, over 50 one-minute intervals, give the following data for *x*, the number of counts per minute:

$$\Sigma x = 84, \quad \Sigma x^2 = 226.$$

- (iv) Calculate unbiased estimates of the mean and variance of the number of decays per minute, and explain why this data supports your answer to part (i). [4]
- 6. A coin is tossed 20 times, giving 14 heads.

Working at the 1% significance level

- (i) test whether the coin is fair, or whether it is biased towards Heads, stating your hypotheses clearly.
- (ii) Find the acceptance region for the test.
- (iii) If the coin is in fact biased, such that the probability of scoring Heads is 0.6, find the probability of making a Type II error. [4]

7. Patients suffering from 'flu are treated with a drug. The number of days, *t*, that it then takes for them to recover is modelled by the continuous random variable *T* with the probability density function

 $f(t) = kt^3(4-t)$ 0 < t < 4,

 f(t) = 0 otherwise.

(i) Find the value of <i>k</i> .	[3]
(ii) Find the mean and standard deviation of <i>T</i> .	[7]
(iii) Find the probability that a patient takes more than 3 days to recover.	[3]
(iv) Comment on the suitability of the model.	[1]

STATISTICS 2 (C) TEST PAPER 3 : ANSWERS AND MARK SCHEME

1.	(i) Tourists to Crete might have very different views from tourists to	
	other parts of Greece. A sample of tourists covering all regions	B1
	of Greece should be interviewed	B1
	(ii) X is B(120, 0.97) and Y is B(120, 0.03). Y is well approximated	B1 B1
	by Poisson, because n is large and p is small	B1 5
2	(i) By Central Limit Theorem, mean of X is 3.5 , variance is	B1
	2.91666/30, and distribution is N(3.5, 0.0972222)	B1 B1

	(ii) $P(3 < X < 4) = P(-0.5/\sqrt{0.097222} < Z < 0.5/\sqrt{0.097222})$	M1 A1
	(ii) $P(3 < X < 4) = P(-0.57 \times 0.097222 < Z < 0.57 \times 0.097222)$ = $P(-1.604 < Z < 1.604) = 0.891$	A1 6
	-1(-1.004 < Z < 1.004) - 0.891	AI 0
3	(i) One-tail test, at 1% level, has critical value $z = -2.326$	B1
	so rejection region is $X < 3 \cdot 2 - 2 \cdot 326 \times 0.7 / \sqrt{74} = 3.01 \text{ kg}$	M1 A1 A1
	(ii) 1%	B1
	(iii) If $X > 3.011$ kg, then the null hypothesis will not be rejected. This is	
	an error if the mean birth-weight of all the sick babies is < 3.2 kg	B2 7
4.	No. of left-handed is $X \sim B(35, 0.32)$ $X \sim N(11.2, 7.616)$	M1 A1
	$P(5 < X < 15) = P(5 \cdot 5 < X < 14 \cdot 5) = P(-2 \cdot 07 < Z < 1 \cdot 20)$	M1 A1 A1
	= 0.8842 - 0.0195 = 0.865	A1
	Continuity correction, going from discrete to continuous variable	B1 7
	Continuity concerton, going nom discrete to continuous variable	
5.	(i) Poisson : $Po(1.5)$	B1
	(ii) $P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.9344 = 0.0656$	M1 A1
	(iii) Counts in 5 minutes are Po(7.5), so $P(X \le 3) = 0.0591$	B1 M1
	(iv) Mean = $84/50 = 1.68$ Var. = $226/49 - (50/49) \times 1.68^2 = 1.732$	B1 M1 A1
	Mean \approx variance so this supports Poisson model	B1 9
6.	(i) $X \sim B(20, p)$ H0 : $p = , H1 : p > \frac{1}{2}$	B1 B1
0.	Assuming H0, $P(X \ge 14) = 1 - 0.9423 = 0.0577$	M1 A1 A1
	> 1%, so do not reject H0 at 1% level.	Al
	(ii) From tables, if $X \le 15$, accept H0	M1 A1
	(iii) If $p = 0.6$, then $P(X \le 15) = 0.949$, and this is the probability	M1 A1 A1
	of a Type II error	A1 12
7.	(i) $k \int 4t^3 - t^4 dt = 1$ so $k [4^4 - 4^5/5] = 1$ $k = \frac{5}{256}$	M1 A1 A1
	0 4	
	(ii) Mean = $k \int 4t^4 - t^5 dt = \frac{5}{256} [4^6/5 - 4^6/6] = 2.67$	M1 A1
	0 	
	(i) $k \int_{0}^{4} 4t^{3} - t^{4} dt = 1$ so $k [4^{4} - 4^{5}/5] = 1$ $k = \frac{5}{256}$ (ii) Mean $= k \int_{0}^{4} 4t^{4} - t^{5} dt = \frac{5}{256} [4^{6}/5 - 4^{6}/6] = 2.67$ $Var(T) = k \int_{0}^{4} 4t^{5} - t^{6} dt - 2.67^{2} = \frac{5}{256} [4^{7}/6 - 4^{7}/7] - 7.111$	M1 A1 A1
	= 0.508 Standard deviation = $\sqrt{0.508} = 0.713$	M1 A1
	(iii) $P(T > 3) = k \int_{0}^{4} 4t^{3} - t^{4} dt = 0.367$	M1 A1 A1
	(iv) The cut-off at $t = 4$ is unlikely to be so definite in reality	B1 14

PMT